Psychophysical dissection of genotype effects on human bitter perception.
نویسندگان
چکیده
The purpose of this study was to define the effects of individual polymorphisms within the haplotypes of the TAS2R38 taste receptor gene on human bitter taste perception. A racially and ethnically diverse sample of children and adults (N = 980) was phenotyped for thresholds of 6-n-propylthiouracil (PROP) and genotyped for 3 polymorphisms of the TAS2R38 gene (A49P, V262A, I296V). Subjects were grouped according to their diplotype (i.e., specific combinations of haplotypes) and compared for PROP thresholds. By contrasting subjects with particular diplotypes, we found that in addition to A49P, V262A and I296V were related to the ability of the subjects to detect PROP. The V262A variant site affected the ability of subjects to detect mid-range concentrations of PROP, whereas the I296V variant site affected the ability of subjects to perceive PROP at the lowest concentration. These data agree with results from previous studies using cell-based assays for 2 variant sites (A49P and V262A) but not those for the I296V variant site. The reason for the discordant results is not known but it highlights the need for psychophysical as well as cell-based methods to understand the genotype-phenotype relationship for taste receptors. Human PROP sensitivity is determined by the combination of each of these 3 polymorphisms within the TAS2R38 gene.
منابع مشابه
Validation of edible taste strips for assessing PROP taste perception.
A novel delivery method is described that incorporates taste stimuli into edible strips for determining n-propylthiouracil (PROP) taster status. Edible strips that contained 400 or 600 nanomoles of PROP were prepared for psychophysical studies. Using these strips, we measured taste intensity, taste hedonics, and taste quality responses in a sample of healthy volunteers (n = 118). Participants w...
متن کاملThe Molecular Basis of Individual Differences in Phenylthiocarbamide and Propylthiouracil Bitterness Perception
Individual differences in perception are ubiquitous within the chemical senses: taste, smell, and chemical somesthesis . A hypothesis of this fact states that polymorphisms in human sensory receptor genes could alter perception by coding for functionally distinct receptor types . We have previously reported evidence that sequence variants in a presumptive bitter receptor gene (hTAS2R38) correla...
متن کاملIdentification of ligands for two human bitter T2R receptors.
Earlier, a family of G protein-coupled receptors, termed T2Rs, was identified in the rodent and human genomes through data mining. It was suggested that these receptors mediate bitter taste perception. Analysis of the human genome revealed that the hT2R family is composed of 25 members. However, bitter ligands have been identified for only three human receptors so far. Here we report identifica...
متن کاملHuman bitter perception correlates with bitter receptor messenger RNA expression in taste cells.
BACKGROUND Alleles of the receptor gene TAS2R38 are responsible in part for the variation in bitter taste perception of 6-n-propylthiouracil (PROP) and structurally similar compounds (eg, glucosinolates in cruciferous vegetables). At low concentrations, people with the PAV ("taster" amino acid sequence) form of TAS2R38 perceive these bitter compounds, whereas most with the AVI ("nontaster" amin...
متن کاملReceptor Polymorphism and Genomic Structure Interact to Shape Bitter Taste Perception
The ability to taste bitterness evolved to safeguard most animals, including humans, against potentially toxic substances, thereby leading to food rejection. Nonetheless, bitter perception is subject to individual variations due to the presence of genetic functional polymorphisms in bitter taste receptor (TAS2R) genes, such as the long-known association between genetic polymorphisms in TAS2R38 ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Chemical senses
دوره 36 2 شماره
صفحات -
تاریخ انتشار 2011